US009304955B2

a2 United States Patent 10) Patent No.: US 9,304,955 B2
Kegel (45) Date of Patent: Apr. 5, 2016
(54) TECHNIQUES FOR IDENTIFYING AND 7,814,224 B2* 10/2010 Maruyamaetal. 709/235
HANDLING PROCESSOR INTERRUPTS 2003/0084322 Al* 5/2003 Schertzetal. 713/200
2003/0149888 Al* 82003 Yadav 713/200
. 2003/0159060 A1* 82003 Galesetal. . . 713/200
(71) Applicant: ADVANCED MICRO DEVICES, 2008/0140895 Al* 62008 Bakeretal. 7101262
INC., Sunnyvale, CA (US) 2009/0157936 Al* 6/2009 Goss etal. 710/264
2009/0235005 Al* 9/2009 Hawketal. 710/268
(72) Inventor: Andrew G. Kegel, Redmond, WA (US) 2010;0192029 Al: 7;2010 W}?llnghet ali ~~~~~ 714;723
2012/0297057 Al* 11/2012 Ghoshetal. 709/224
INC., Sunnyvale, CA (US)
N Application for United States Letters Patent for “Method and Appa-
(*) Notice: SUbJeCt. to any dlSCIalmer{ the term of this ratus for Controlling System Interrupts,” by Andrew G. Kegel and
patent is extended or adjusted under 35 Mark Hummel (Not Yet Published).
U.S.C. 154(b) by 476 days.
* cited by examiner
(21) Appl. No.: 13/718,841
. Pri Examiner — Dede Zech
(22) Filed: Dec. 18,2012 A”’,”;”y | Ef“’m”,w stg’n gccgang
ssistant Examiner —
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Park, Vaughan, Fleming &
Dowler LLP
US 2014/0173152 A1 Jun. 19, 2014 ot
57 ABSTRACT
(51) Imt.ClL 7)
GOG6F 21/57 (2013.01) A method for identifying and reporting interrupt behavior
GOG6F 21/82 (2013.01) includes incrementing a counter when an interrupt signal is a
GO6F 21/74 (2013.01) designated type and is not received from an approved periph-
GO6F 13/24 (2006.01) eral device, and performing a corrective action when the
(52) U.S.CL counter reaches a threshold value. In some embodiments, the
CPC ... GOG6F 13/24 (2013.01); GO6F 21/572 designated type of the interrupt signal comprises a System
(2013.01); GO6F 21/74 (2013.01); GO6F 21/82 ~ Management Interrupt (SMI), which has the capability of
(2013.01) halting oper?ltions aF all processors within a systgm to execute
58) Field of Classification Search associated instructions within a protected circumstance,
(58 CPC ... GOGF 21/572: GO6F 21/32: GOGF 21/74: resuming normal operations for each of the plurality of pro-
HO04L 63/1458 cessors when the corrective action has been completed. In
See application file for complete search history. another embodiment, the corrective action includes creating a
report identitying, within the same protected circumstance,
(56) References Cited the interrupt signal as an SMI. In some embodiments, the

U.S. PATENT DOCUMENTS

5,764,999 A * 6/1998 Wilcoxetal. 710/261
5913,071 A * 6/1999 Macomber 712/40
6,000,002 A * 12/1999 Bonitz 710/260
7,099,977 B2* 8/2006 Chongetal. 710/262
7,165,135 B1* 1/2007 Christieetal. 710/269

400;
SMI
HandlIng Routine
Receive An
Intemupt

402

Handle
Excessive
SMI Rate

method performs a different corrective action when an inter-
rupt signal is a designated type and is received from an
approved peripheral device and decrements a counter. In
some embodiments, the interrupt signal includes information
indicating its source.

12 Claims, 4 Drawing Sheets

US 9,304,955 B2

Sheet 1 of 4

Apr. 5, 2016

U.S. Patent

¥

aaAsQ Ol

3

&

W

b ald
0L~ O8]

. 105589014 J085850id ,,
. 0L~ 0L -

Aouisiy N P

Wweishs shg ged
g 10888001 10853001 N
g 01 ol -

0L~
001"

X

: -0z}
ggmgm Ol N gz,
200 O/l Nz,
o) N

US 9,304,955 B2

Sheet 2 of 4

Apr. 5, 2016

U.S. Patent

¢ "ol
0j7 X weysAs sendwon 001
mewcw H alemULL WasAS (alemyog)
JosiadAH 077
ove- mmm:&\\
057" waisAs Buelsdp weyshs Bugeisdn 067
doy ddy day ddy ddy ddy
092~ 092~/ 092~ 097 092 092

US 9,304,955 B2

Sheet 3 of 4

Apr. 5, 2016

U.S. Patent

£ ol
001~
wRsAg sendwon
@mml/.
e aremuu] welshs (temyog) 02z
JosiaadAH
) soiveg | -08E
0/c J {BRLIA
wisisAg Bunessdp wesAs Buneisdn -~ 06¢
erad
ddy ddy ddy ddy ddy ddy
092~ 09z~ 09z~ 082 092 092

U.S. Patent Apr. 5, 2016 Sheet 4 of 4 US 9,304,955 B2

400~
SMi
Handling Routine

402~ |

Receive An
Interrupt

~406
Inferrupt Goes E

To Hypervisor

410~ Yes

SMI Arrives At
SMi Handler

420~ v
Initialization

440

_| Resolve Issue
At Source

s SMI From™
~ AnApproved

, No v 450

Increment Decrement
Counter Counter

460~

480~

Handle
Excessive
SMi Rate

+ 480
Complete

“Is Counter >=
. Threshold 7 "

% ¥

e

Retumn |

Return |

US 9,304,955 B2

1

TECHNIQUES FOR IDENTIFYING AND
HANDLING PROCESSOR INTERRUPTS

TECHNICAL FIELD

Embodiments of the subject matter described herein relate
generally to System Management Interrupts (SMls) used
within a computer system. More particularly, embodiments
of the subject matter relate to identifying and reporting SMI
behavior.

BACKGROUND

Typical computer systems are generally comprised of a
processor, memory, and external devices. Ordinarily, the cen-
tral processing unit (CPU) is busy executing instructions
retrieved from memory that are associated with an operating
system and one or more application programs, such as a word
processor, a graphics program, a game, or the like. However,
execution of these application programs may be temporarily
suspended to handle more urgent matters. For example, in
some computer systems, the external devices are configured
to generate interrupt signals that are associated with a high
priority concern, such as a hardware error, a low-voltage or
power-loss situation, a high system temperature, or the like.
These types of interrupts are generally known as System
Management Interrupts (SMIs), and are generally executed in
System Management Mode (SMM), wherein execution of all
normal processes is suspended in favor of the execution of an
SMI in a protected environment. Owing to the urgency of'this
type of message, the processor temporarily halts execution of
the application program while executing an SMI handling
routine that identifies a course of action to be taken by the
processor in response to the particular type of interrupt.

Those skilled in the art will appreciate that if one or more
of the external devices generates a significant number of
SMIs, the operation of the processor may be substantially
engaged in executing the numerous interrupt handling rou-
tines, rather than executing the application programs. Such a
condition may appear to the user as a slow and unresponsive
application program.

In some instances, one or more peripheral devices may fail
or otherwise begin to operate in an undesirable fashion in
which numerous SMIs are generated. In other instances, an
attack, commonly known as an SMI storm, may occur in
which the security of one or more peripheral devices may be
compromised and put into a mode of operation in which a
rapid sequence of SMI interrupts are generated to intention-
ally slow or substantially freeze the operation of the processor
with respect to the application programs.

Some computer systems allow a guest operating system
(OS) in a virtualized system to have direct access to virtual
peripheral devices. Thus, an initial attack may take the form
of'loading a rogue guest OS. In such a situation, software in
the guest OS can mal-program the peripheral to generate an
SMI storm and thereby mount a denial of service (DoS) attack
against other guest operating systems. Attacks such as an SMI
storm are highly undesirable, as they prevent the computer
system from performing its main task of executing the appli-
cation program.

BRIEF SUMMARY OF EMBODIMENTS

Some embodiments provide a method for identifying and
reporting interrupt behavior. The method increments a
counter when an interrupt signal is a designated type and is

10

25

30

40

45

50

55

2

not received from an approved peripheral device and per-
forms a corrective action when the counter reaches a thresh-
old value.

Some embodiments provide a method for handling a denial
of service (DoS) attack. The method receives an interrupt
signal in a system; enters a protected mode of operation; and
determines, based on a type and a source of the interrupt
signal, whether execution of a set of executable instructions
associated with the interrupt signal is permitted. When execu-
tion of the set of executable instructions associated with the
interrupt signal is not permitted, the method records data
describing a condition of the system and information relating
to the interrupt signal, and exits the protected mode of opera-
tion.

Some embodiments provide a method for handling SMI
behavior. The method receives a System Management Inter-
rupt (SMI) signal, wherein the SMI signal is associated with
a set of SMI instructions; enters the set of SMI instructions;
and determines whether the SMI signal is from one of a
plurality of verified sources. When the SMI signal is from one
of the plurality of verified sources, the method takes correc-
tive action with regard to one of the plurality of verified
sources, decrements a counter, and exits the set of SMI
instructions. When the SMI signal is not from one of the
plurality of verified sources, the method increments the
counter. When the counter reaches a pre-determined thresh-
old value, the method creates a report including properties of
the SMI signal, and the method then exits the set of SMI
instructions.

This summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the detailed description. This summary is not intended to
identify key features or essential features of the claimed sub-
jectmatter, nor is it intended to be used as an aid in determin-
ing the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the subject matter may
be derived by referring to the detailed description and claims
when considered in conjunction with the following figures,
wherein like reference numbers refer to similar elements
throughout the figures.

FIG. 1 is a schematic block diagram representation of
hardware components of a computer system, according to
some embodiments;

FIG. 2 is a schematic block diagram representation of
modules of a computer system, according to some embodi-
ments;

FIG. 3 is a schematic block diagram representation of
modules of a computer system, according to some embodi-
ments; and

FIG. 4 is a flow chart that illustrates a method of handling
interrupts, according to some embodiments.

DETAILED DESCRIPTION

The following detailed description is merely illustrative in
nature and is not intended to limit the embodiments of the
subject matter or the application and uses of such embodi-
ments. As used herein, the word “exemplary” means “serving
as an example, instance, or illustration.” Any implementation
described herein as exemplary is not necessarily to be con-
strued as preferred or advantageous over other implementa-
tions. Furthermore, there is no intention to be bound by any

US 9,304,955 B2

3

expressed or implied theory presented in the preceding tech-
nical field, background, brief summary or the following
detailed description.

The subject matter presented herein relates to methods
used by a software-based System Management Interrupt
(SMI) handler operating within the firmware of a computer
system. In some embodiments, an SMI is sent to the SMI
handler within firmware of a computer system, and the SMI
handler determines whether or not the SMI originated within
an approved source. An “approved” source may be defined as
a pre-defined, verified, or otherwise approved source. When
the SMI did not originate from one of these approved sources,
the SMI handler increments a counter. When the counter
reaches a pre-determined threshold value due to an excessive
number of SMIs (e.g., an SMI “storm™), the SMI handler
takes some form of corrective action.

The approach described herein intelligently collects datato
determine when a computer system is experiencing an SMI
storm, and then it reports that data to the user so that the user
may take appropriate action.

Referring now to the drawings, FIG. 1 is a schematic block
diagram representation of hardware components of a com-
puter system 100. The computer system 100 may be imple-
mented using any desired platform. For example, the com-
puter system 100 could be realized as any of the following,
without limitation: a desktop computer, laptop computer,
server, printer, camera, motherboard, or any other device that
includes the processor(s) 110. Additional components such as
displays and user input components may be employed with-
out departing from the scope of the present disclosure.

The computer system 100 may include: (i) a central pro-
cessing unit (CPU) 105 having one or more processors or
processor cores (e.g., a multiprocessor system) 110, (ii) one
or more input/output (I/O) devices 120, (iii) at least one data
bus 130, and (iv) system memory 140. In practice, an embodi-
ment of the computer system 100 may include additional or
alternative elements and components, as desired for the par-
ticular application. Those skilled in the art will recognize that
computer system 100 may be constructed from these and
other components. However, to avoid obfuscating the
embodiments described herein, only those components use-
ful to an understanding of the present embodiment are
included.

The CPU 105 may be implemented using any suitable
processing system, such as one or more processors 110 (e.g.,
multiple chips or multiple cores on a single chip), controllers,
microprocessors, microcontrollers, processing cores and/or
other computing resources spread across any number of dis-
tributed or integrated systems, including any number of
“cloud-based” or other virtual systems.

The CPU 105 is in communication with at least one 1/O
device 120 via a data bus 130. The I/O devices 120 may
comprise graphics (video) cards, sound cards, TV tuners,
USB interfaces, and the like.

The CPU 105 is also in communication with system
memory 140. The system memory 140 represents any non-
transitory short or long term storage or other computer-read-
able media capable of storing programming instructions for
execution on the processor(s) 110, including any sort of ran-
dom access memory (RAM), read only memory (ROM), flash
memory, magnetic or optical mass storage, and/or the like. It
should be noted that the system memory 140 represents one
suitable implementation of such computer-readable media,
and alternatively or additionally, the CPU 105 could receive
and cooperate with external computer-readable media that is

40

45

4

realized as a portable or mobile component or application
platform, e.g., a portable hard drive, a USB flash drive, an
optical disc, or the like.

FIG. 2 is a schematic block diagram representation of
example modules of the computer system 100, according to
some embodiments. In some embodiments, the modules
include system firmware 230, a hypervisor 220, an SMI han-
dler 240, at least one operating system 250, and applications
260. These modules may be implemented using software,
hardware, firmware, processing logic, or any combination
thereof. Furthermore, these modules (e.g., instructions and/or
code implementing these modules) may be stored in a com-
puter-readable medium of the computer system 100. The
computer-readable medium may include system memory
(e.g., DRAM, etc.), non-volatile memory devices, volatile
memory devices, and the like.

The system firmware 230 may be implemented as a Basic
Input/Output System (BIOS) or a Unified Extensible Firm-
ware Interface (UEFI). The system firmware 230 is given
control at the start of the boot process for the computer system
100. It configures the hardware components in the computer
system 100 and then loads the software associated with the
hypervisor 220.

The hypervisor 220 is a software construct that allows
multiple operating systems 250 to share the hardware com-
ponents of the computer system 100. Each operating system
250 appears to have hardware components of the computer
system 100 (e.g., the CPU 105, system memory 140, etc.) all
to itself. However, the hypervisor 220 controls the allocation
of the hardware components of the computer system 100 to
each operating system 250 and ensures that the operating
systems 250 cannot disrupt each other. Interrupts, other than
SMIs 270, are directed to the hypervisor 220 for proper rout-
ing.

The operating systems 250 unknowingly share the hard-
ware components of the computer system 100. Attempts by
an operating system 250 to manipulate the hardware compo-
nents of the computer system 100 or system firmware 230 are
intercepted by the hypervisor 220, and the hypervisor 220
conducts the operation on behalf of the operating system 250.
Each of the applications 260 is associated with one of oper-
ating systems 250, and is started and stopped by the associ-
ated operating system 250.

In some embodiments, the SMI handler 240 is included in
the system firmware 230. Under normal conditions, SMIs 270
are generated by the hardware components of the computer
system 100 and then delivered to the SMI handler 240 for
resolution, as shown in FIG. 2. SMIs 270 that originate at the
hardware components of the computer system 100 are not
intercepted by, and do not interact with, any other part of the
computer system 100. SMIs 270 are delivered directly to the
SMI handler 240, where they are resolved. The SMI handler
240 is suitably designed and configured to perform a variety
of functions and operations as needed to support the SMI
management and reporting techniques described in more
detail below.

FIG. 3 is another schematic block diagram representation
of example modules of the computer system 100, according
to some embodiments. The modules of FIG. 3 are similar to
the modules of FIG. 2. Thus, only the differences between
will be discussed. In particular, FIG. 3 includes a virtual
device 380.

The virtual device 380 comprises a device description that
mimics a physical device in the computer system 100. In
some embodiments, the virtual device 380 is configured to
appear to a guest OS 350 as one or more /O devices 120 (i.e.,
a physical PO device). The virtual device 380 is associated

US 9,304,955 B2

5

with a guest OS 350 running directly on the CPU 105 of the
computer system 100, but must request use of the hardware
components (e.g., the CPU 105, etc.) of the computer system
100 through the hypervisor 320.

Within a computer system, a failure within a guest OS or a
hardware failure causes at least one virtual device to generate
multiple SMIs (i.e., an SMI “storm™). When an SMI is gen-
erated, the computer system goes into system management
mode (SMM), which is a protected circumstance, wherein at
least some processors (in certain scenarios, every processor)
in the computer system suspends normal operations during
execution of the SMI. The SMI cannot be blocked or con-
trolled by any other part of the computer system. The SMI is
then delivered to the SMI handler, where the issue or system
failure that caused the SMI to be generated is resolved.
Because there is no way to control or block each SMI, an SMI
storm halts operations on all processors within the computer
system during the production of multiple SMI, resulting in a
denial-of-service (DoS) attack.

FIG. 4 is a flow chart that illustrates an SMI handling
routine 400. When the SMIs 370 of FIG. 3 are sent to the SMI
handler 340, the SMI handler 340 executes the SMI handling
routine 400 of FIG. 4. The various tasks performed in con-
nection with a process described here may be performed by
software, hardware, firmware, or any combination thereof.
For illustrative purposes, the description of a process may
refer to elements mentioned above in connection with FIG. 1,
FIG. 2,and FIG. 3. In practice, portions of a described process
may be performed by different elements of the described
system, e.g., the system firmware, the hypervisor, the SMI
handler, or other logic in the system. It should be appreciated
that a described process may include any number of addi-
tional or alternative tasks, the tasks shown in the figures need
not be performed in the illustrated order, and that a described
process may be incorporated into a more comprehensive pro-
cedure or process having additional functionality not
described in detail herein. Moreover, one or more of the tasks
shown in the figures could be omitted from embodiments of a
described process as long as the intended overall functionality
remains intact.

For ease of description and clarity, this example assumes
that the SMI handling routine 400 begins when an interrupt is
issued or generated and received for handling (402). In certain
embodiments, the SMI handling routine 400 processes or
analyzes the received interrupt to identify or determine
whether the received interrupt is of a designated type. In this
regard, the type of a given interrupt may be one of a plurality
of different interrupt signal types, which may include, with-
out limitation, level-triggered interrupts, edge-triggered
interrupts, message interrupts, “doorbell” interrupts, and/or
SMI. For this particular implementation, the SMI handling
routine 400 determines whether the received interrupt is an
SMI (404). If the received interrupt is not an SMI, then the
interrupt is routed to the hypervisor (406). If, however, the
SMI handling routine 400 identifies the received interrupt as
an SMI, then the SMI can be provided or delivered such that
the SMI arrives at the SMI handler (410). Accordingly, in
some embodiments, the SMI handling routine 400 receives an
interrupt signal of a designated type from a plurality of inter-
rupt signal types, where the designated type refers to an SMI.
In practice, an SMI signal is associated with a set of execut-
able instructions, otherwise known as the SMI handling rou-
tine 400, which may be referred to herein as SMI instructions.
Moreover, in certain implementations, an SMI signal may
include, contain, or otherwise convey a source of the respec-
tive SMI using, for example, a resolvable identifier, a flag, a
bit field, or the like.

10

15

20

25

30

35

40

45

50

55

60

65

6

In some embodiments, an initialization task (420) may be
performed to enter the set of executable instructions associ-
ated with the SMI. In some embodiments, entering the set of
SMI instructions, otherwise known as beginning execution of
the SMI instructions, creates a protected mode of operation,
and exiting the set of SMI instructions, or completing execu-
tion of the SMI instructions, terminates the protected mode of
operation. During the protected mode of operation, all pro-
cessors within the computer system 100 suspend normal
operations (e.g., execution of application code, etc.) to com-
plete the set of SMI instructions. In some embodiments, the
initialization task (420) may include preparing the system
memory for the upcoming operations in the SMI handling
routine 400.

Once the SMI has arrived (410), the SMI handling routine
400 determines whether the interrupt signal is from an
approved peripheral device (430). In some embodiments, the
pre-defined peripheral device is found within the system
hardware. In some embodiments, an approved peripheral
device comprises an /O device.

Alternatively, the SMI handling routine 400 may deter-
mine whether further processing of the set of executable
instructions is permitted, based upon the type and the source
of the interrupt signal. To make the determination (430), the
SMI handler polls each of the plurality of approved peripheral
devices in the computer system 100 to inquire whether an
SMI was sent by that particular device. In some embodi-
ments, this polling of peripheral devices includes consulting
alist of [/O devices located in system memory to locate a base
address of each 1/O device, and then reading a status register
of each I/O device to determine whether or not an SMI was
posted by that particular I/O device.

In some embodiments, the SMI handling routine 400 reads
identifying information located within the SMI itself to deter-
mine whether the SMI was sent by a pre-defined, verified, or
otherwise approved I/O device. In some embodiments, the
SMI itself comprises information that identifies its source.
Accordingly, the SMI handling routine 400 can check the
source-identitying information to confirm whether or not the
received SMI was issued by an approved device.

If the SMI handling routine 400 confirms that the received
SMI was generated by an approved source (430, “yes”™), then
the problem or issue within the approved source that caused
the SMI to be generated is resolved at the approved source
(440). In some embodiments, a problem or issue within an
approved source may include a hardware failure, overheating,
power loss, and/or a failure associated with destruction of a
physical structure of the peripheral device and/or the com-
puter system 100. In some embodiments, resolving the prob-
lem or issue within the approved source includes performing
a corrective action. Thus, corrective action can be performed
and completed when the SMI handling routine 400 deter-
mines that further processing of the executable instructions is
permitted, which in turn is determined when the decision task
430 confirms that the received SMI is from an approved
source device.

In some embodiments, the corrective action comprises cor-
recting a malfunction at one of the plurality of verified
sources. In some embodiments, the corrective action com-
prises a resolution to a problem at the pre-defined source,
including taking actions to rectify the problem so that normal
operations within the peripheral device may continue. In
some embodiments, the corrective action may comprise a
defined operation to address the malfunction within a periph-
eral device. For example, terminating power to the peripheral

US 9,304,955 B2

7

device, effectively shutting the peripheral device down, or
turning on cooling fans, thereby protecting the computer sys-
tem from physical damage.

Following resolution of the problem at the source (440), the
SMI handling routine 400 continues by acknowledging that a
“legitimate” SMI has been handled. In some embodiments, a
counter is decremented (450) in response to the handling of a
legitimate SMI. In some embodiments, the counter is incre-
mented when the SMI handling routine 400 determines that
the received SMI was issued by an unapproved source (as
described in more detail below). An SMI issued by an
approved source may be a single, spurious occurrence, or it
may be one of a plurality of SMIs issued consecutively, e.g.,
an SMI storm.

In some embodiments, the counter includes a counter vari-
able stored at a location in system memory. The counter
variable may be incremented or decremented by the SMI
handling routine 400. In some embodiments, the counter
includes a counter variable stored in a counter register.

A non-zero value at the counter shows increased SMI activ-
ity, which may be indicative of an SMI storm. However,
spurious SMI generation may cause the counter to incremen-
tally increase at times other than the occurrence of an SMI
storm, resulting in a false, non-zero value at the counter. In
some embodiments, the counter is decremented (450) to nor-
malize the value of the counter due to the occurrence of
spurious SMI generation. The step of decrementing the
counter (450) need not create an absolute scenario, wherein
the counter always contains a value of zero unless an SMI
storm is present. However, decrementing the counter (450)
upon resolution of a legitimate SMI from a pre-defined, veri-
fied, or otherwise approved peripheral device, assists to keep
the value of the counter from becoming artificially high, as it
counts the occasional and inevitable spurious SMI occur-
rence, thereby indicating that an SMI storm is taking place. In
some embodiments, a “floor” value of zero is set to prevent
decrementing the counter to a negative value.

In some embodiments, the counter (450) is decremented
linearly. The counter may use other counting schemes as well.
For example, in some embodiments, the counter is decre-
mented using an exponential back-off technique, where a
right-shift operation is performed within a digital register
value to represent a logical divide-by-two operation. These
embodiments may be used to rapidly discard an artificially
high counter value due to spurious SMIs.

In some embodiments, the counter divides by a number
other than two, depending upon the likely rate of spurious
SMI production and arrival at the SMI handler.

In some embodiments, the counter is decremented based at
least in part on a time (or a time period) at which SMIs are
received. For example, if the number of SMIs arriving at the
SMI handler is below a pre-determined threshold value
within a pre-determined time frame, the counter may be dec-
remented by that number of SMIs. In other words, if the
number of SMIs arriving at the SMI handler is below the
number indicative of an SMI storm, the counter may effec-
tively forget those SMIs and begin its evaluation over again,
when the timer resets itself.

Execution of the instructions associated with the SMI
occurs during a protected operating mode wherein the SMI
cannot be blocked or regulated in any way. The protected
operating mode is created by halting operations on all pro-
cessors except the specific processor executing the instruc-
tions associated with the SMI itself. After the counter has
been decremented (450), the SMI handling routine 400 may
perform one or more additional completion functions (480) to
release the other processors to return to normal operations.

40

45

55

8

The completion functions (480) bring all of the halted
processors out of their dormant state and allow them to return
to a normal mode of operation. Following the completion
functions (480), the CPU 105 leaves SMM and returns to the
normal mode of operation.

Ifthe SMI handling routine 400 receives an SMI 370 that is
not from one of a plurality of approved sources (430, “no”
then the counter is incremented (460) and the value of the
counter is compared to a threshold value (470). The step of
incrementing the counter (460) comprises counting each SMI
that arrives at the SMI handler. The counter may be incre-
mented by a constant value (e.g., one, a number other than
one, etc.) or incremented by a value determined by a math-
ematical function (e.g., a function of the current value or prior
values of the counter, a function of a prior increment value or
values of the counter, a function of time, etc.).

When the value of the counter is greater than or equal to a
pre-determined threshold value (470, “yes”), the computer
system 100 is experiencing an excessive SMI rate and the
SMI handling routine 400 handles (490) the excessive SMI
rate. In some embodiments, the pre-determined threshold
value is a numeric value stored in memory, and comprises a
minimum integer value indicative of an excessive rate of SMI
arrival at the SMI handler, e.g., an SMI storm.

Accordingly, in some embodiments, an excessive SM1 rate
is handled by initiating a corrective action (described below)
when the counter reaches a pre-determined threshold value.
Further, this corrective action takes place within the protected
environment of System Management Mode (SMM) or, in
other words, initiating the corrective action while normal
operations for each of the plurality of processors is sus-
pended, and then resuming normal operations for each of the
plurality of processors afterwards.

As described above with reference to task 490, the SMI
handling routine 400 may take corrective action when the
counter reaches a pre-determined threshold value. In some
embodiments, the corrective action includes creating a report
that includes properties of the SMI signal. In this regard,
properties of the SMI signal may include the source of the
SMIs arriving at the SMI handler. In some embodiments, the
source may be a peripheral /O device. In some embodiments,
the source may comprise a virtual representation of a physical
peripheral device, implemented within software.

In some embodiments, the corrective action includes
recording data describing the conditions of the computer
system. In some embodiments, conditions of the computer
system 100 may include the frequency of SMIs arriving at the
SMI handler 240. In some embodiments, conditions of the
computer system 100 may include other diagnostics that will
assist in the identification of the device(s) generating the
excessive number of SMIs. For example, the SMI handling
routine 400 may track the number of SMIs arriving at the SMI
handler 240 during a period of time when a specific guest OS
has exclusive use of the hardware resources within the com-
puter system 100. If an SMI storm occurs during the period of
time controlled by the specific guest OS, then the identity of
the device producing the SMIs has been narrowed to those
devices associated with the specific guest OS.

After the corrective action has been taken by the SMI
handling routine 400, the counter is reset. In some embodi-
ments, the counter is cleared by a computer system 100 reset
operation, which executes on every reboot of the computer
system 100. In some embodiments, the counter reaches a
floor value of zero slowly, via the decrement operation that
occurs when an SMI 270 arrives at the SMI handler 240 from
an approved source. In some embodiments, the counter is
reset to zero at a previously determined time interval.

US 9,304,955 B2

9

Alternatively, when the determining step 430 determines
that further processing of the set of executable instructions is
not permitted, data describing a condition of the system and
the type and source of the interrupt signal is recorded, and the
set of executable instructions is exited.

Ifit is determined that the counter value is not greater than
or equal to the pre-determined threshold value (the “No”
branch of decision step 470), then the SMI handling routine
400 proceeds to task 480 to release the other processors to
return to normal operations. Thereafter, the CPU leaves SMM
and returns to normal operations, as described previously.

Techniques and technologies may be described herein in
terms of functional and/or logical block components and with
reference to symbolic representations of operations, process-
ing tasks, and functions that may be performed by various
computing components or devices. Such operations, tasks,
and functions are sometimes referred to as being computer-
executed, computerized, software-implemented, or com-
puter-implemented. In practice, one or more processor
devices can carry out the described operations, tasks, and
functions by manipulating electrical signals representing data
bits at memory locations in the system memory, as well as
other processing of signals. The memory locations where data
bits are maintained are physical locations that have particular
electrical, magnetic, optical, or organic properties corre-
sponding to the data bits. It should be appreciated that the
various block components shown in the figures may be real-
ized by any number of hardware, software, and/or firmware
components configured to perform the specified functions.
For example, an embodiment of a system or a component may
employ various integrated circuit components, e.g., memory
elements, digital signal processing elements, logic elements,
look-up tables, or the like, which may carry out a variety of
functions under the control of one or more microprocessors or
other control devices.

When implemented in software or firmware, various ele-
ments of the systems and methods described herein are essen-
tially the code segments or instructions that perform the vari-
ous tasks. The program or code segments can be stored in a
processor-readable medium or transmitted by a computer
data signal embodied in a carrier wave over a transmission
medium or communication path. The “processor-readable
medium” or “machine-readable medium” may include any
medium that can store or transfer information. Examples of
the processor-readable medium include an electronic circuit,
a semiconductor memory device, a ROM, a flash memory, an
erasable ROM (EROM), a floppy diskette, a CD-ROM, an
optical disk, a hard disk, a fiber optic medium, a radio fre-
quency (RF) link, or the like. The computer data signal may
include any signal that can propagate over a transmission
medium such as electronic network channels, optical fibers,
air, electromagnetic paths, or RF links. The code segments
may be downloaded via computer networks such as the Inter-
net, an intranet, a LAN, or the like.

In addition, certain terminology may also be used in the
following description for the purpose of reference only, and
thus are not intended to be limiting. For example, terms such
as “upper”, “lower”, “above”, and “below” refer to directions
in the drawings to which reference is made. Terms such as
“front”, “back”, “rear”, “side”, “outboard,” and “‘inboard”
describe the orientation and/or location of portions of the
component within a consistent but arbitrary frame of refer-
ence which is made clear by reference to the text and the
associated drawings describing the component under discus-
sion. Such terminology may include the words specifically
mentioned above, derivatives thereof, and words of similar

import. Similarly, the terms “first”, “second” and other such

20

30

35

40

45

55

10

numerical terms referring to structures do not imply a
sequence or order unless clearly indicated by the context.

While at least some embodiments have been presented in
the foregoing detailed description, it should be appreciated
that a vast number of variations exist. It should also be appre-
ciated that the embodiments described herein are not intended
to limit the scope, applicability, or configuration of the
claimed subject matter in any way. Rather, the foregoing
detailed description will provide those skilled in the art with
a convenient road map for implementing the described
embodiments. It should be understood that various changes
can be made in the function and arrangement of elements
without departing from the scope defined by the claims,
which includes known equivalents and foreseeable equiva-
lents at the time of filing this patent application.

What is claimed is:

1. A non-transitory computer-readable storage medium
having executable instructions stored thereon, wherein, when
executed by a processor, the executable instructions perform
a method comprising:

receiving a System Management Interrupt (SMI) signal,

wherein the SMI signal is associated with a set of SMI
instructions;

entering the set of SMI instructions;

determining whether the SMI signal is from one of a plu-

rality of verified sources;

when the SMI signal is from one of the plurality of verified

sources:

taking corrective action with regard to one of the plural-
ity of verified sources;

decrementing a counter; and

exiting the set of SMI instructions;

incrementing the counter when the SMI signal is not from

one of the plurality of verified sources; and

when the counter reaches a pre-determined threshold

value:

creating a report including properties of the SMI signal;
and

exiting the set of SMI instructions.

2. The non-transitory computer-readable storage medium
of'claim 1, wherein the corrective action comprises correcting
a malfunction at one of the plurality of verified sources.

3. The non-transitory computer-readable storage medium
of claim 1, wherein the pre-determined threshold value is
indicative of an SMI storm.

4. The non-transitory computer-readable storage medium
of claim 1, wherein:

entering the set of SMI instructions creates a protected

circumstance; and

exiting the set of SMI instructions terminates the protected

circumstance.

5. The non-transitory computer-readable storage medium
of claim 4, wherein the protected circumstance comprises all
processors within a system suspending normal operations to
complete the set of SMI instructions.

6. A method for handling SMI behavior, comprising:

by a computer system,

receiving a System Management Interrupt (SMI) signal,
wherein the SMI signal is associated with a set of SMI
instructions;

entering the set of SMI instructions;

determining whether the SMI signal is from one of a
plurality of verified sources;

when the SMI signal is from one of the plurality of
verified sources:
taking corrective action with regard to one of the

plurality of verified sources;

US 9,304,955 B2

11

decrementing a counter; and
exiting the set of SMI instructions;
incrementing the counter when the SMI signal is not
from one of the plurality of verified sources; and
when the counter reaches a pre-determined threshold
value:
creating a report including properties of the SMI sig-
nal; and
exiting the set of SMI instructions.
7. A method for handling interrupt behavior, comprising:
by a computer system,
receiving a System Management Interrupt (SMI) signal;
when the SMI signal is determined to be from one of a
plurality of verified sources:
resolving an issue that generated the SMI signal at the
one of the plurality of verified sources; and
decrementing a counter; and
when the SMI signal is not determined to be from one of
the plurality of verified sources:
incrementing the counter; and

10

12

taking a corrective action when the counter reaches a
pre-determined threshold value.

8. The method of claim 7, wherein resolving the issue
comprises correcting a malfunction at the one of the plurality
of verified sources.

9. The method of claim 7, wherein taking the corrective
action comprises creating a report that comprises information
about the SMI signal.

10. The method of claim 7, wherein the pre-determined
threshold value is indicative of an SMI storm.

11. The method of claim 7, further comprising:

upon receiving the SMI signal, entering a set of SMI

instructions associated with the SMI signal; and
exiting the set of SMI instructions after decrementing the
counter or taking the corrective action.

12. The method of claim 11, further comprising:

causing one or more processors in the computer system to

suspend operation when entering the set of SMI instruc-
tions.

